Orbit computation in celestial mechanics by Urabe's method
نویسندگان
چکیده
منابع مشابه
Celestial mechanics.
Albouy, Alain (Paris, France) Belbruno, Ed (Princeton, USA) Buck, Gregory (Saint Anselm College, USA) Chenciner, Alain (Paris, France) Corbera, Montserrat (Universitat de Vic, Spain) Cushman, Richard (Utrecht, Holland and Calgary, Canada) Diacu, Florin (Victoria, Canada) Gerver, Joseph (Rutgers, USA) Hampton, Marshall (Minneapolis, USA) Kotsireas, Ilias (Wilfried Laurier, Waterloo, Canada) Laco...
متن کاملPerturbation Theory in Celestial Mechanics
4 Classical perturbation theory 4 4.1 The classical theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.2 The precession of the perihelion of Mercury . . . . . . . . . . . . . . . . . . . . 6 4.2.1 Delaunay action–angle variables . . . . . . . . . . . . . . . . . . . . . . 6 4.2.2 The restricted, planar, circular, three–body problem . . . . . . . . . . . 7 4.2.3 Expansi...
متن کاملSingularities in Classical Celestial Mechanics
(1) irii'ii = -gradiU(ql9 ..., qn), i = 1, ..., n, where gradf denotes the gradient with respect to q(. Thoughout this paper we use a single dot over a variable to represent its derivative with respect to time t and a double dot to represent its second derivative with respect to t. The potential energy U has a singularity whenever q(=q^ We write this singular set ^v = {€€(«?: *, = *,}, A = U Au...
متن کاملMimicking celestial mechanics in metamaterials
Einstein’s general theory of relativity establishes equality between matter–energy density and the curvature of spacetime. As a result, light and matter follow natural paths in the inherent spacetime and may experience bending and trapping in a specific region of space. So far, the interaction of light and matter with curved spacetime has been predominantly studied theoretically and through ast...
متن کاملBirth of Resonances in the Spin–orbit Problem of Celestial Mechanics
The behaviour of resonances in the spin–orbit coupling in Celestial Mechanics is investigated. We introduce a Hamiltonian nearly–integrable model describing an approximation of the spin–orbit interaction. A parametric representation of periodic orbits is presented. We provide explicit formulae to compute the Taylor series expansion in the perturbing parameter of the function describing this par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences
سال: 1973
ISSN: 0034-5318
DOI: 10.2977/prims/1195192441